Studies of Silyl and Germyl Group VI Species. Part VIII.* Synthesis and Characterization of Trimethyl-, Silyl-, Germyl- and Stannyl-methyl Derivatives of Methane- and Benzene-selenols

JAAFAR M. CHEHAYBER and JOHN E. DRAKE

Department of Chemistry, University of Windsor, Windsor, Ont., N9B 3P4, Canada Received April 19, 1985

Abstract

Asymmetrically substituted selenides of the type $(CH_3)_3MCH_2SeR$, where $M = Si$, Ge, Sn and $R =$ $CH₃$ and $C₆H₅$, have been prepared by the reaction of Group IV halides with lithium organoselenolates and characterized by their infra-red, Raman, 'H, $13C$ and 77 Se (M = Si, Ge) NMR spectra.

Introduction

Sulfur compounds of silicon, germanium and tin have been studied extensively $[1-3]$. These compounds have been used as reagents in organic synthesis $[4-5]$ and as ligands for transition metal complexes [6]. Analogous selenium compounds have received much less attention but nevertheless have already been used in organic synthesis. For example, the lithium salt of $(CH_3)_3$ SiCH₂SeC₆H₅ has been used to convert halides into their homologous aldehydes [7]. Several selenium compounds have been used as ligands in the preparation of transition metal complexes [8-10]. Methyl- and phenyl-seleno and -telluro derivatives of Group IV compounds have been prepared by selenium or tellurium insertion reactions with methyl- and phenyl-lithium followed by the reaction with the corresponding halide $[11]$ -141. However the scarcity of such work is demonstrated by the fact that some authors [15] have mistakenly made the assumption that the synthesis of lithium methylselenide, a common intermediate, was original in 1983. In this report we describe the synthesis and characterization of some neopentyl compounds of selenium.

Experimental

Apparatus

All preparations were performed using a conventional high-vacuum Pyrex-glass system equipped

with greaseless stopcocks. The ${}^{1}H$ NMR spectra were recorded on a Bruker WP80 spectrometer operating at 80 MHz using TMS as an internal lock. The ¹H chemical shifts are displayed in Table I. The ¹³C NMR spectra were recorded on a Bruker CPXlOO multinuclear pulsed Fourier transform spectrometer operating at 22.63 MHz under 'H noise decoupling conditions using CDCl₃ as an internal deuterium lock and as a standard placed at 77.0 ppm from TMS. The instrument's data processing system corrected 11 chemical shifts to the TMS scale. The ^{13}C chemical $\frac{1}{2}$ is the state of the $\frac{1}{2}$ and $\frac{1}{2}$. The $\frac{77}{8}$ NMR spectra were recorded on a General Electric GN300 spectrometer operating at 57.237 MHz under ¹H noise decoupling conditions using CDCl₃ as an internal deuterium lock and $Me₂Se$ as an external standard. The 77 Se chemical shifts are $-4.01, 6.59$, 199.61 and 206.78 ppm for $Me₃SiCH₂SeMe$, $Me₃$ - $GeCH₂SeMe$, $Me₃SiCH₂SePh$ and $Me₃GeCH₂SePh$ respectively to high frequency of $Me₂Se$. All NMR data were recorded on pure samples sealed in semimicro tubes surrounded by CCl_4/TMS for ¹H NMR and CDCl₃ for ¹³C and ⁷⁷Se NMR spectra. Infrared spectra $(4000-200 \text{ cm}^{-1})$ were recorded on pure samples placed between CsI plates using a Perkin-Elmer 180 spectrometer. Raman spectra (3 IOO- 100 cm⁻¹) were recorded on pure samples sealed in semi-micro tubes on a Spectra-Physics Model 700 spectrometer in conjunction with a Model 164 Argon-ion laser and Model 265 Exciter Unit. Typical power output varied between 100 and 300 mW, using the 488.0 nm line. Elemental analyses were performed at Guelph Chemical Laboratories Ltd., Guelph, Ontario.

Starting Materials

Selenium (British Drug House), methyllithium (Alfa), phenyllithium (Alfa) and chloromethyl(trimethyl)silane (Laramie) were commercially available and used without further purification. Chloromethyl- (trimethyl)germane was prepared by the chlorination of tetramethylgermane [16] and its purity was checked by its infrared spectrum [17]. Iodomethyl-

^{*}For Part VII see ref. 35.

Compounda	δ Me ₃ M	δ CH ₂	δ SeMe	δ SePhb
Me ₄ Si	0.0			
Me ₃ SiCH ₂ Cl	0,4	2.98		
Me ₃ SiCH ₂ SeMe	0.41	2.00	2.03	
Me ₃ SiCH ₂ SePh	0.26	2.15		7.26,7.55
Me_4Ge	0.33			
Me ₃ GeCH ₂ Cl	0.66(0.33)	3,30(2,97)		
Me ₃ GeCH ₂ SeMe	0.66(0.33)	2.30(1.97)	2.40(2.07)	
Me ₃ GeCH ₂ SePh	0.50(0.17)	2.41(2.08)		7.39.7.69(7.06.7.36)
Me ₄ Sn	0.52			
Me ₃ SnCH ₂ I	1.59(1.07)	4,84(4,32)		
Me3SnCH ₂ SeMe	1.85(1.33)	4.82(4.30)	3.0(2.48)	
Me ₃ SnCH ₂ SePh	1.04(0.52)	4,22(3,70)		7.74,8.12(7.22,7.60)

TABLE I. The ¹H NMR Chemical Shifts of Me₄M, Me₃MCH₂X and Me₃MCH₂SeR (M = Si, Ge, Sn; X = Cl, I; R = Me, Ph)

a All shifts are in ppm to low field of external TMS, values in parentheses indicate shifts relative to Me₄M. bAromatic resonances are resolved into two envelopes for ortho and para (high field) and meta (low field) protons.

^aShifts are to low field of external TMS.

(trimethyl)stannane was prepared by the reaction of methylene iodide (Alfa) with a zinc copper couple followed by addition of chloro(trimethyl)stannane [18]. The resulting mixture was distilled on the vacuum line into traps held at $0, -63$ and -196 °C. The portion collected at -63° C was kept and the rest discarded. The purity of $(CH_3)_3$ SnCH₂I was checked by its 'II NMR spectrum and refractive index [181.

Synthesis

Elemental selenium (0.5 g, 6.3 mmol) was placed in a 200 ml round-bottomed flask equipped with a septum. The flask was evacuated, flushed with nitrogen and then held at -196 °C. Tetrahydrofuran $(ca. 10 ml)$ was then distilled into the flask and LiR $(R = CH₃, C₆H₅; ca, 8 mmol) introduced by syringe.$ The mixture was allowed to warm slowly to room temperature with stirring. In 20 min the mixture turned milky and then colorless (with $LiCH₃$) or to a mustard color (with $LiC₆H₅$). After ca. 1.5 h of reaction time, the solvents were distilled off and, for effective removal of tetrahydrofuran, the reaction vessel was left open to the pump for 24 h (the difficulty in removing the solvent has been attributed to a possible coordination between tetrahydrofuran and LiSeR in the solid state). With the flask held at -196 °C, diethyl ether (ca. 10 ml) was distilled in, followed by the $(CH_3)_3MCH_2X$ (M = Si, Ge, Sn) species in slight excess (ca. 8.5 mmol), from a graduated storage vessel. The reaction mixture was stirred for 3 h at room temperature after which the contents were passed through traps held at -45° C and -196 °C. The contents of the -196 °C trap (mainly ether) were discarded. The fraction held in the trap at -45 °C (containing some tetrahydrofuran) was passed through -23 and -196 °C traps. The -23 °C portion was retained and the process repeated to get the pure product. The $(CH_3)_3MCH_2SeR$ species are heavy liquids and could only be transferred with heating from a hot-air gun. The difficulty of transferrance increased with increasing molecular weight. Typical amounts prepared were 5.7 mmol and 5.3 mmol for $(CH_3)_3$ SiCH₂SeR $(R = CH_3$ and C_6H_5 respectively), 5.0 mmol and 5.2 mmol for $(CH_3)_3Ge$ - $CH₂SeR$, and 5.1 mmol and 4.8 mmol for $(CH₃)₃$. SnCH2SeR. All compounds had a pungent and persistent smell. Elemental analysis was carried out on

(CH_3) ₃MCH₂SeR, with M = Si, Ge, Sn and R = CH₃ and C₆H₅

the following as representative samples: $(CH_3)_3$ Si-CH₂SeC₆H₅. Found: C, 51.81; H, 6.86. Calc.: C, 49.37; H, 6.63%. (CH₃)₃GeCH₂SeC₆H₅. Found: C, 42.77; H, 5.91. Calc.: C, 41.74; H 5.60%.

Results and Discussion

The neopentyl compounds Me₃MCH₂SeMe and Me₃MCH₂SePh were prepared by the following sequences of reactions:

$$
LiR + Se \xrightarrow{\text{1.5 h}} LiSeR
$$
 (1)

 $R = CH_3, C_6H_5$

LiseR + Me₃MCH₂X
$$
\xrightarrow{\text{3 h}}
$$
 Me₃MCH₂SeR + LiX
(M = Se, Ge; X = Cl and M = Sn; X = I) (2)

The Me₃MCH₂SeR compounds are heavy liquids with persistent and pungent odors. Despite the difficulty of separating them from the solvents, particularly tetrahydrofuran, they were eventually obtained in
$$
70–90\%
$$
 yields based on selenium.

NMR Spectra

The NMR spectra of the neat liquids confirm, by the lack of additional peaks and the expected integration ratios, that there are no other species containing hydrogen, carbon or selenium present in any significant amount and that we are indeed dealing with pure Me₃MCH₂SeR species in all cases. Representative spectra are displayed in Fig. 1 (the ${}^{1}H$ NMR spectrum of $Me₃GeCH₂SePh$) and Fig. 2 (the ¹³C NMR spectrum of Me₃SiCH₂SePh). The values of the chemical shifts are given in Tables I and II along with those of related species for comparison.

The relationship between the ${}^{1}H$ NMR chemical shifts of Me₄Si, Me₄Ge, and Me₄Sn and the relative electronegativities of the Group IV elements has been the subject of considerable controversy [19-21]. The net result of the argument is the tacit agreement that the order of electronegativities is probably $Ge \geqslant Si \geqslant Sn$ despite the fact that the chemical shifts move in an almost step-wise fashion downfield of TMS. Thus, because the factors effecting the shifts are complex, it is preferrable to examine the 'internal shifts' (given in parentheses in Table I), which reflect the changes in the H NMR chemical shifts relative to the parent compound, as a proton on a CH₃ group is replaced by Cl, I, SeMe or SePh, rather than the absolute values. These internal shifts might more accurately reflect changes in electronegativity. The substitution of the more electronegative chlorine atom in both Me₄Si and Me₄Ge

53

Fig. 1. The ¹H NMR spectrum of $Me₃GeCH₂SePh.$

Fig. 2. The ¹³C NMR spectrum of Me₃SiCH₂SePh.

deshields the remaining $CH₂$ protons to a similar extent. The effect is much less, as expected, on the other CH₃ protons, but the internal shift is greater in $Me₃SiH₂Cl$ which contains the presumably less electronegative silicon atom. Similarly the shifts involving all substituents are largest on $Me₃SnCH₂X$ which contains the least electronegative tin atom. In general, the shifts resulting from $-$ SeMe or $-$ SePh substitution suggest effective electronegativities closer to that of iodine than chlorine. The similarity in electronegativity of silicon and germanium is also
indicated by the similarity in the ¹³C NMR chemical shifts displayed in Table II for related $CH₃$ and $CH₂$ carbon atoms. For the $Me₃MCH₂SePh$ series, the Hammett-Taft constants σ_R° [22] were calculated from $\delta_p - \delta_m = 22.06 \sigma_{\rm R}^{\rm o}$ and found to be negative, indicating an electron release from selenium towards the phenyl ring. The ⁷⁷Se NMR chemical shifts are listed in the experimental section and show that the selenium atom is more shielded when attached to $Me₃SiCH₂$ than $Me₃GeCH₂$ for both-SeMe and $-$ SePh derivatives by 9.60 and 7.17 ppm respectively. This suggests that slightly more electron density can be pulled away from a silicon-containing moiety than one containing germanium.

Si		Ge		Sn		Tentative assignments
IR (i)	Raman (liq.)	IR $(iq.)$	Raman (liq.)	IR $(iq.)$	Raman (liq.)	
2960s	2956mw,dp	2992m	$2996ms$,dp	2993m	2978mw	(a) $CH3(M)$, $CH3(Se)$, $CH2 str$.
2900sh	2893s.p	2926mw	2930s,p	2920 _{ms}	2924 _s	(s) $CH3(M)$, $CH3(Se)$, $CH2$ str.
1410s	$1410w$, dp	1417w	1419w.dp	1428vw	1436w.dp	(a) $CH_3(M)CH_3(Se)$, CH_2 def.
1269 mw	1262w	1267w	1272w	1274w	1283w	(s) CH ₂ def.
1250s	1256w.p	1238w	1234w	1190w	1197w	(s) $CH_3(M)$, $CH_3(Se)$ def.
1090v _s	1085vw	1085s	1082vw	1090w	1098vw	$CH2$ rock
908mw	915mw	900w	909w	900 _m	890w	CH ₂ (Se) rock
850mw	843vw	810s	810mn	775s	776w	$CH3(M)$ rock
707ms	715 mw,dp	600s	$593m$,dp	568m	$563w$, dp	(a) M $-C$ str.
615s	617 mw,p	570m	572p	505m	510s,p	(s) M – C str.
587m	$590ms$,dp	560sh	$560m$,dp	585ms	$595m$,dp	(a) Se-C str.
560w	563s.c	550w	553ms,p	575m	575m.p	(s) Se-C str.
270ms	270 mw	200s	192sh	230m	$233w$,dp	(a) $MC3$ def.
225 mw	228m.p		180w,p		177w,p	(s) MC ₃ def.
	180sh				153w	$MC3$ rock

TABLE III. The Vibrational Spectra and the Tentative Assignments of the Series Me₃MCH₂SeMe. (M = Si, Ge, Sn)

Vibrational Spectra

(i) Me_3MCH_2SeMe ($M = Si$, Ge, Sn)

The Raman spectra of this series are displayed in Fig. 3 and the frequencies and their tentative assignments are listed in Table III. The assignments were made with some confidence based on comparisons with spectra of Me₂Se [24], Me₃MSeMe [11], Me_3MCH_2X [17] and Me_nMX_{4-n} [25-27] (M = Si, Ge, Sn; $n = 0-3$).

As expected, the positions of the characteristic C-H vibrations were relatively unshifted upon changing M. In this region, two envelopes appear

Fig. 3. The Raman spectra of Me₃SiCH₂SeMe (A), Me₃Ge- $CH₂SeMe$ (B) and $Me₃SnCH₂SeMe$ (C).

in the Raman spectra and can be assigned to the symmetric (polarized) and asymmetric (depolarized) CH₃ and CH₂ stretches in the 2920 and 2990 cm⁻¹ regions respectively. When $M = Ge$, these two envelopes show some splitting but no attempt was made to separately assign these modes since the spectra were used for characterization rather than as a basis for a spectroscopic study. Similarly, the CH₃ and $CH₂$ deformation modes were assigned in the 1190- 1250 cm⁻¹ and 1400 cm⁻¹ regions for the symmetric and asymmetric vibrations respectively. The rocking modes appear as weak bands in the Raman spectra in the $770-1100$ cm⁻¹ region. The C-Se and M-C stretching vibrations are easily assigned and virtually unchanged compared to those reported for the $Me₃M$ SeMe series (M = Si, Ge, Sn) [11]. The same is noted for the $MC₃$ deformation and rocking modes.

(ii) M_3MCH_2 SePh ($M = Si$, Ge, Sn)

The Raman spectra of this series are displayed in Fig. 4. The frequencies and their tentative assignments are listed in Table IV. The vibrations associated with the Me₃MCH₂ moieties were assigned similarly to those above for Me₃MCH₂SeMe. The assignements were made assuming free rotation about the Se-Ph bond. The effective symmetry of the ring is C_{2v} which has 30 vibrations which may be labelled according to Herzberg's notation [28]. There are six substituent sensitive modes (X-Sen in Table II) which were assigned by comparison with monosubstituted benzenes [29, 30] and related molecules [13, 14, 31, 32] such as Me₃MSePh and Me₃MTePh. The remaining 24 substituent-insensitive vibrations may be associated with some confidence to the corresponding modes in benzene [33] and are listed as a footnote to Table IV.

Si		Ge		Sn		Tentative assignments
IR $(iiq.)$	Raman (liq.)	IR $(iiq.)$	Raman (liq.)	IR $(iq.)$	Raman (liq.)	
2960ms	$2950m$,dp	2980m	$2972m$,dp	3000mw	$2977m$,dp	(a) $CH3(M)$, $CH2 str.$
2910m	2892s,p	2917m	2905s.p	2917m	2908s.p	(s) $CH3(M)$, $CH2 str$.
1410m	$1406w$, dp	1405w	$1396w$,dp	1435mw	$1430vw$, dp	(a) $CH3$ def.
1260ms	1264m	1233ms	1236vw.p	1185mw	1186m,p	(s) CH ₃ def.
1290w	1284w	1290vw	1288w	1295vw	1291 mw	$CH2$ def.
1075w	1069m,p	1065w	1063m.p	1070m	1060s.p	X -sen. (q), $CH2$ rock
838s	842w	825s	833vw	778ms	783vw	(a) $CH3$ rock
750m	753 _{br}	730w	734vw	738ms	745vw	(s) CH ₃ rock
666ms	672w,p	662w	670 mw,p	667w	670w,p	x -sen (r)
690mw	$697w$,dp	600 _{vs}	$603m$,dp	530s	$537m$,dp	(a) $M - C$ str.
570w	573m,p	570mw	562vs.p	507ms	510vs.p	(s) M – C str.
460s	462vw	460m	462vw	465w	468vw	X -sen (y)
310w	307 mw,p	305vw	307 mw,p		307 mw,p	X -sen (t)
270s	270 mw,dp		$185ms$,dp	222w	225 _{mw}	(a) $MC3$ def.
225w	228mw, p		162ms		180w	$(s) MC3$ def.
	$180ms$,dp					MC ₃ rock

TABLE IV. The Vibrational Spectra and the Tentative Assignments of the Series $Me₃MCH₂SePh (M = Si, Ge, Sn)^a$

^aVibrations associated to the substituent insensitive phenyl modes were observed at: ν (CH) 3062p (z), ν (CC) 1612m,dp (k), 1428vw (m), 1435vw (n), 1328vw (O), β (CH) 1178w,p (a), 1150w,dp (C), 1020m,p (b), ring 995vs,p, v(CH) 900vw (i), 836vw (g), 738vw (f), α (CCC) 613w,dp (s); ϕ (CC) 400 vvw (W).

Fig. 4. The Raman spectra of $Me₃SiCH₂SePh (A), Me₃Ge-$ CH₂SePh (B) and Me₃SnCH₂SePh (C).

Acknowledgements

We wish to thank the Natural Sciences and Engineering Research Council for financial support and also Drs. Ole Mols and Robin Hood of Wayne State University for kindly recording some of the NMR spectra whilst our instrument was out of operation.

References

- 1 E. W. Abel and D. A. Armitage, *Adv. Organomet.* Chem., 5, l(1967).
- 2 H. Schumann and M. Schmidt, *Angew. Chem., Znt.* Ed. 3 M. Lesbre, P. Mazerolles and J. Satge, 'The Organic Com-Engl., 4, 1007 (1965).
- pounds of G _{ermanium}, Wiley, New York, 1971.
- 4 D. J. Ayer and R. C. Cookson, Tetrahedron Lett., 21, D. J. Ayer and R. C. Cookson, *Tetrahedron Lett., 21, 1967 (1980).*
- 5 F. A. Carey and 0. Hernandez, *J. Org. Chem., 38, 2570* (1973) .
- 6 W. Ehrl and H. Vahrenkamp, *Chem. Ber., 105, 1471 (1972).*
- 7 K. Sachdev and H. S. Sachdev, *Tetrahedron Lett., 47,* E W. Abel, S. K. Bhargava, K. Kite, K. G. Orrell, V. Sik. *4223 (1976).*
- and B. L. Williams, *Polyhedron, I, 289* (1982). E. W. Abel, G. W. Farrow, K. G. Orrell and V. Sik, J.
- 9 E. W. Abel, G. W. Farrow, K. G. Orrell and V. Sik, J. 10 *E;* W: Abe!, A. K; Shamsuddin Ahmed, G. W. Farrow, *Chem. Sot., Dalton Trans., 42 (1977).*
- K. G. Orrell and V. Sik, J. *Chem. Sot., Dalton Trans., 47 (1977).*
- 11 J. W. Anderson, G. K. Barker, J. E. Drake and M. Rodger, J. *Chem. Sot., Dalton Trans., 1716 (1973).*
- 12 *G.* K. Barker, J. E. Drake and R. T. Hemmings,J. *Chem.* 13 J. E. Drake and R. T. Hemmings, J. *Chem. Sot., Dalton Sot. Dalton Trans., 450 (1974).*
- 14 J. E. Drake and R. T. Hemmings, *Znorg. Chem., 19, Trans., 1730 (1976).*
- 15 M. Tiecco, L. Testaferri, M. Tingoli, D. Chianelli and M. *1879 (1980).*
- 16 V. F. Mironov, S. A. Mikhailyants and T. K. Gai, *Zh.* Montanucci, *Synth.* Comm., 13,617 (1983).
- *Obshch. Khim., 39,397 (1969).* M . Kam, J , J , J , \mathbb{R} and V. Chulousky
- 17 M. Jakoubkova, Z. Papovskava and V. Chvalousky, 18 D. Seyferth and S. B. Andrews, J. *Organomet.* Chem., 30, *Collect. Czech. Chem. Commun., 45, 854 (1980).*
- 151 (1971).
- *56 J. M. Chehayber and J. E. Drake*
- 19 A. L. Allred and E. G. Rochow,J. Inorg. Nucl. Chem., 5, 269 (1958).
- 20 R. S. Drago,J. *Inorg. Nucl. Chem.,* 15,231 (1960).
- 21 A. L. Allred and E. G. Rochow, *J. Inorg. Nucl. Chem., 20,167* (1961).
- 22 R. W. Taft, Jr., S. Ehrenson, I. C. Lewis and R. E. Glick, J. *Am. Chem. Sot., 81,5352* (1959). 23 W. McFarlane and R. J. Wood, J. Chem. Sot., *Dalton*
- *iTans.,* 1397 (1972).
- 24 J. R. Allkins and P. J. Hendra, *Spectrochim. Acta, 22, 2075 (1965);23,1671* (1967).
- 25 A. L. Smith, *Spectrochim. Acta, 19, 849* (1953).
- *26* J. E. Griffiths, *Spectrochim. Acta, 20,1335 (1964).*
- 27 J. R. Durig, C. F. Jumper and J. N. Willis, J. *Mol. Spectrosc., 37, 260* (1971).
- *28 G.* Herzberg, 'Infrared and Raman Spectra of Polyatomic Molecules', Van Nostrand, Princeton, N.J., 1945, 110
- $20 \, C$. V. Stephensen, W. C. Coburn and W. S. Wilcox *Suectrochim. Acta. 17.933* (1961).
- $30 \text{ D. H. Which is a constant, 100 cm .$
- 31 D. M. Revitt and D. B. Sowerby, *Spectrochim. Acta, PartA:, 26, 1581* (1970).
- *32* J. H. S. Green and W. Kynaston, *Spectrochim. Acta, Part A:, 25, 1671* (1969).
- *33* R. D. Mair and D. F. Hornig, J. Chem. *Phys., 17, 1236* (1949).
- *34* F. A. Miller,J. *Chem. Phys., 24,996* (1956).
- 35 J. E. Drake, A. Vahradian and B. M. Glavincevski, Can. *J. Chem., 61,2717* (1983).